A comparison of score-based methods for estimating Bayesian networks using the Kullback-Leibler divergence

نویسندگان

  • Jessica Kasza
  • Patty Solomon
چکیده

In this paper, we compare the performance of two methods for estimating Bayesian networks from data containing exogenous variables and random effects. The first method is fully Bayesian in which a prior distribution is placed on the exogenous variables, whereas the second method, which we call the residual approach, accounts for the effects of exogenous variables by using the notion of restricted maximum likelihood. We review the two score-based metrics, then study their performance by measuring the Kullback Leibler divergence, or distance, between the two resulting posterior density functions. The Kullback Leibler divergence provides a natural framework for comparing distributions. The residual approach is considerably simpler to apply in practice and we demonstrate its utility both theoretically and via simulations. In particular, in applications where the exogenous variables are not of primary interest, we show that the potential loss of information about parameters and induced components of correlation, is generally small.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Confidence Set Based on Kullback-Leibler Divergence Distance

Consider the problem of estimating true density, h(.) based upon a random sample X1,…, Xn. In general, h(.)is approximated using an appropriate in some sense, see below) model fƟ(x). This article using Vuong's (1989) test along with a collection of k(> 2) non-nested models constructs a set of appropriate models, say model confidence set, for unknown model h(.).Application of such confide...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Comparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil

In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...

متن کامل

A Scoring Function for Learning Bayesian Networks based on Mutual Information and Conditional Independence Tests

We propose a new scoring function for learning Bayesian networks from data using score+search algorithms. This is based on the concept of mutual information and exploits some well-known properties of this measure in a novel way. Essentially, a statistical independence test based on the chi-square distribution, associated with the mutual information measure, together with a property of additive ...

متن کامل

Kullback Leibler Divergence for Bayesian Networks with Complex Mean Structure

In this paper, we compare two methods for the estimation of Bayesian networks given data containing exogenous variables. Firstly, we consider a fully Bayesian approach, where a prior distribution is placed upon the effects of exogenous variables, and secondly, we consider a restricted maximum likelihood approach to account for the effects of exogenous variables. We investigate the differences b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011